Guanyadors
Existence of knotted vortex tubes in steady Euler flows
Alberto Enciso and Daniel Peralta-Salas
Oscillatory motions for the restricted planar circular three body problem
Marcel Guardia, Pau Martin and Tere M. Seara
Guanyadors
Existence of knotted vortex tubes in steady Euler flows
Alberto Enciso and Daniel Peralta-Salas
Oscillatory motions for the restricted planar circular three body problem
Marcel Guardia, Pau Martin and Tere M. Seara
Període
treballs fins el 31 de gener de 2015
Entrega de premis
Data
octubre de 2015
Lloc
Institut d’Estudis Catalans
Lloc
Institut d’Estudis Catalans
Resolució del premi Barcelona Dynamical Systems 2015 sota el mecenatge del professor Carles Simó i Torres
In the paper by Alberto Enciso and Daniel Peralta-Sala, the authors construct for any given knot or link type, a particular type of static solution to the inviscid Euler equation on Euclidean 3-space (a “Beltrami flow”) which has among its integral curves one which realizes this knot or link type. As a result, they get a single flow which contains all knot types, which is a special form of Lord Kelvin’s conjecture.
In the paper by Marcel Guardia, Pau Martín and Tere M. Seara, the authors prove the existence of oscillatory solutions in the restricted planar circular 3 body problem for any value of the mass ratio of the primaries, which had been open since Chazy’s 1920s work pointed out oscillatory motion as one possible final behavior of the N-body motion.
Comité
Henk Broer
University of Groningen
Richard Montgomery
University of California, Santa Cruz
Robert L. Devaney
Boston University
Marcelo Viana
IMPA
Yu.S. Ilyashenko
Cornell University
Amadeu Delshams
UPC, Secretari del jurat sense vot